Легенда:
новое сообщение
закрытая нитка
новое сообщение
в закрытой нитке
старое сообщение
|
- Напоминаю, что масса вопросов по функционированию форума снимается после прочтения его описания.
- Новичкам также крайне полезно ознакомиться с данным документом.
Есть ли алгоритм вычисления Пи с конечной рекурсией? 26.08.05 13:30 Число просмотров: 4684
Автор: Zef <Alloo Zef> Статус: Elderman
|
Немного оффтоп, но к теме.
Я интересовался вопросами получения бесконечных неповторяющихся последовательностей на основе конечных с использованием конечных алгоритмов в бесконечном цикле. Можно ли такое сделать и на основе какой самой короткой последовательности?
Ответ можно. На основе последовательности 1 0. Корень из 2, например.
Алгоритм, естессно, конечен, в бесконечном цикле, но:
Имеет место бесконечная рекурсия. Т.е. для получения последующих знаков нужно использовать, если не все, то все равно, бесконечно возрастающее количество знаков из предыдущего результата.
А можно ли получить бесконечную последовательность с использованием конечной рекурсии? Т.е. используя ограниченное количество последних знаков предыдущего результата? Я предполагаю, что - нет. Доказательство (не строгое): поскольку количество разрядов ограничено, то неизбежно повторение, максимум через 2^n циклов, где n - ширина фрейма, т.е. число используемых двоичных разрядов. Па-амоему я прав? Тада наличие бесконечной рекурсии в алгоритме вычисления будет необходимым (но не достаточным) условием ирациональности.
И тут вкрались сомнения... Где-то здесь, похоже проскакивал алгоритм вычисления Пи с конечной рекурсией. Или, все-таки с бесконечной? Я их не смотрел - некогда. Кто с ними имел дело - ответте, плз.
И еще:
А что является достаточным доказательством ирациональности? Невозможность выразить в виде дроби m/n, где m и n - целые? А кАк ето доказать?! Невырождение цифровой последовательности в циклически-повторяющуюся? А как Ето доказать?! Вот, доказать вырождение в цикл на основе алгоритма вычисления, это можно... Так, уже теплее!
|
|
|