информационная безопасность
без паники и всерьез
 подробно о проекте
Rambler's Top100Атака на InternetЗа кого нас держат?
BugTraq.Ru
Русский BugTraq
 Анализ криптографических сетевых... 
 Модель надежности двухузлового... 
 Специальные марковские модели надежности... 
 Microsoft обещает радикально усилить... 
 Ядро Linux избавляется от российских... 
 20 лет Ubuntu 
главная обзор RSN блог библиотека закон бред форум dnet о проекте
bugtraq.ru / библиотека / книги / атака через internet / причины успеха удаленных атак
АТАКА ЧЕРЕЗ INTERNET
обложка
содержание
предисловие
вместо введения
немного истории
атаки на распределенные системы
атаки на хосты internet
причины успеха удаленных атак
принципы создания защищенных систем связи
как защититься от удаленных атак
атаки на сетевые службы
заключение
литература
приложение




Подписка:
BuqTraq: Обзор
RSN
БСК
Закон есть закон





5.2. Причины успеха удаленных атак на сеть Internet

Сеть Internet представляет собой распределенную вычислительную систему, инфраструктура которой общеизвестна и хорошо описана в различной литературе, например [12]. Поэтому рассмотренные в п. 5.1 причины успеха удаленных атак на распределенные ВС можно спроецировать на сеть Internet и сделать вывод о существовании в данной сети серьезных пробелов в обеспечении безопасности, на которых базируются причины. Внимательный читатель, изучая предыдущие разделы, уже, наверное, мысленно осуществил проекцию и обратил внимание на то, как недостатки, присущие абстрактной распределенной ВС, легко обнаруживаются в реальной РВС - Internet.

5.2.1. Отсутствие выделенного канала связи между объектами сети Internet

Глобальная сеть не может быть построена по принципу прямой связи между объектами системы, то есть невозможно для каждого объекта обеспечить выделенный канал для связи с любым другим объектом системы. Поэтому в Internet связь осуществляется через цепочку маршрутизаторов, а, следовательно, сообщение, проходя через большое количество промежуточных подсетей, может быть перехвачено. Также к Internet подключено большое число локальных Ethernet-сетей, использующих топологию "общая шина" . В сетях с такой топологией несложно программно осуществлять перехват всех сообщений в сети. Однако данный недостаток присущ скорее не Internet, а Ethernet.

5.2.2. Недостаточная идентификация и аутентификация объектов и субъектов сети Internet

В Internet в базовых протоколах обмена идентификация и аутентификация объектов практически отсутствует. Так, в прикладных протоколах FTP и TELNET имена и пароли пользователей передаются по сети в виде открытых незашифрованных сообщений (п. 4.1). В существующем стандарте IPv4 протокол сетевого уровня - IP - не предусматривает никакой идентификации и аутентификации объектов (за исключением IP-адреса отправителя, подлинность которого, в свою очередь, невозможно подтвердить (п. 5.1.3-5.1.4)). Все проблемы с идентификацией разработчики переложили на следующий - транспортный - уровень. За этот уровень отвечают протоколы UDP и TCP. Протокол UDP не содержит в себе дополнительной идентифицирующей информации, однако используется для передачи управляющих (!) ICMP-сообщений (п. 4.4). Таким образом, единственным протоколом, приз-ванным обеспечить безопасность в Internet, является протокол TCP, взаимодействие с использованием которого осуществляется по виртуальному каналу.

5.2.2.1 Взаимодействие в сети Internet объектов без установления виртуального канала

Одной из особенностей сети Internet выступает взаимодействие объектов без создания виртуального канала. Очевидно, что разработчики планировали подобное взаимодействие в том случае, если оно не является критичным для системы и не требуется обеспечения его безопасности. Однако, как в случае управляющих ICMP-сообщений (которые уж никак не назовешь не критичными для системы!), так и в случае DNS-запросов используется связь без ВК. Это приводит к возможности осуществления УА, рассмотренных в п. 4.3 и 4.4.

5.2.2.2 Использование нестойких алгоритмов идентификации объектов при создании виртуального TCP-соединения

Как уже подчеркивалось, протокол TCP является единственным базовым протоколом транспортного уровня сети Internet, в функции которого заложена защита соединения. Однако использование простейшего алгоритма идентификации объектов при создании виртуального TCP-канала (п. 4.5), особенно при условии применения в сетевых ОС простейших времязависимых законов генерации TCP-иден-тификаторов (ISN), сводят на нет все попытки обеспечения идентификации канала и объектов при их взаимодействии по протоколу TCP.

5.2.3. Невозможность контроля за виртуальными каналами связи между объектами сети Internet

В существующем стандарте сети Internet невозможно обеспечить контроль за сетевыми соединениями, так как у одного субъекта сетевого взаимодействия существует возможность занять неограниченное число каналов связи с удаленным объектом и при этом остаться анонимным (п. 5.1.3). Из-за этого любой хост в сети Internet может быть полностью парализован (п. 4.6).

5.2.4. Отсутствие в Internet возможности контроля за маршрутом сообщений

Невозможность контроля в сети Internet за виртуальными каналами обуславливается отсутствием в сети контроля за маршрутом сообщений, а именно, в существующем стандарте IPv4 невозможно по пришедшему на хост сообщению определить путь, через который оно прошло, следовательно, невозможно проверить подлинность адреса отправителя (п. 4.6).

5.2.5. Отсутствие в Internet полной информации о ее объектах и, следовательно, вынужденное использование алгоритмов удаленного поиска

Очевидно, что в глобальной сети невозможно обеспечить на каждом ее объекте наличие информации о любом другом объекте в сети. Поэтому, как говорилось ранее, необходимо использовать потенциально опасные алгоритмы удаленного поиска. В сети Internet используется по меньшей мере два алгоритма удаленного поиска: ARP и DNS. Удаленные атаки, направленные на эти протоколы см. в п. 4.2-4.3.

5.2.6. Отсутствие в базовых протоколах Internet криптозащиты сообщений

В существующих базовых протоколах семейства TCP/IP, обеспечивающих взаимодействие на сетевом-сеансовом уровнях, не предусмотрена возможность шифрования сообщений, хотя очевидно, что добавить ее в протокол TCP не составляло труда. Разработчики этих базовых протоколов решили переложить задачу криптозащиты на протоколы более высоких уровней, например, прикладного. При этом базовые протоколы прикладного уровня (FTP, TELNET, HTTP и др.) также не предусматривали никакого шифрования сообщений. Только недавно появился общедоступный прикладной протокол SSL, встроенный в Netscape Navigator, позволяющий как надежно зашифровать сообщение, так и подтвердить его подлинность (п. 7.2.2.1).

В заключении к этой главе хотелось бы заметить, что все описанные выше причины, по которым возможны удаленные атаки на сетевые соединения, делают сеть Internet небезопасной. Поэтому, в принципе, все пользователи этой сети пользуются ее услугами на свой страх и риск и могут быть атакованы в любой момент. В настоящее время пользователи сети Internet в большинстве своем из-за абсолютного непонимания источников и реальной силы угроз находятся в постоянном беспокойстве. Это напоминает тот вирусный бум, который был в начале 90-х годов. Данная глава преследовала цель объяснить и продемонстрировать исходящие из сети Internet возможные угрозы и причины их возникновения.

Диаграмма 2. Причины успеха удаленных атак
на распределенные вычислительные системы и сеть Internet




Rambler's Top100
Рейтинг@Mail.ru



назад «     » вперед


  Copyright © 2001-2024 Dmitry Leonov   Page build time: 0 s   Design: Vadim Derkach