информационная безопасность
без паники и всерьез
 подробно о проектеRambler's Top100
Сетевые кракеры и правда о деле ЛевинаПортрет посетителя
BugTraq.Ru
Русский BugTraq
 Анализ криптографических сетевых... 
 Модель надежности двухузлового... 
 Специальные марковские модели надежности... 
 Очередное исследование 19 миллиардов... 
 Оптимизация ввода-вывода как инструмент... 
 Зловреды выбирают Lisp и Delphi 
главная обзор RSN блог библиотека закон бред форум dnet о проекте
bugtraq.ru / форум / programming
Имя Пароль
если вы видите этот текст, отключите в настройках форума использование JavaScript
ФОРУМ
все доски
FAQ
IRC
новые сообщения
site updates
guestbook
beginners
sysadmin
programming
operating systems
theory
web building
software
hardware
networking
law
hacking
gadgets
job
dnet
humor
miscellaneous
scrap
регистрация





Легенда:
  новое сообщение
  закрытая нитка
  новое сообщение
  в закрытой нитке
  старое сообщение
блин 29.11.01 01:14  Число просмотров: 1044
Автор: Biasha <Бяша> Статус: Member
<"чистая" ссылка>
> имхо, задали написать такую программу человеку на первом
Мы нечто подобное, даже почти в школе делали.
> курсе. Самому думать(чего тут думать-то) лень.
И это весьма, кстати, популярно здесь. Меня даже начинает раздражать...
Что ли штрафовать всё, что смахивает на учебное... Для их же пользы. Так ведь невинные пострадать могут.
Может dl написал бы где, что, мол, не спрашивайте.
Мне понравилось с 16ричной: человек спросил, его послали.
Он подождал, ещё раз спросил. И тут все бурно заобсуждали эту весьма сложную задачу :)
<programming>
[Pascal] Решение системы линейных алгебраических уравнений 28.11.01 10:43  
Автор: New Статус: Незарегистрированный пользователь
<"чистая" ссылка>
Господа!
Никак не могу найти алгоритм решения СЛАУ, при условии
что количество переменных меньше количества уравнений.
(N-кол-во переменных, M-кол-во уравнений M>N)
Помогите кто может, киньте ссылку, plz
LOL 28.11.01 22:48  
Автор: free Статус: Незарегистрированный пользователь
<"чистая" ссылка>
> Господа!
> Никак не могу найти алгоритм решения СЛАУ, при условии
> что количество переменных меньше количества уравнений.
> (N-кол-во переменных, M-кол-во уравнений M>N)

Это значит что - либо решения нет (что написано в любой книжке по лин. ал. для для первокуров), либо ты неправильно выбрал точность или условие сходимости + и методом Гаусса решать ситему нельзя (что написано в любой книжке по численным методам) :)

> Помогите кто может, киньте ссылку, plz

Любой учебник по численным методам.
[Pascal] Решение системы линейных алгебраических уравнений 28.11.01 21:31  
Автор: m0sia Статус: Незарегистрированный пользователь
<"чистая" ссылка>
алгоритмы бывают разные
либо методом определителей(через формулы Крамера)
либо домнажая левой и правой части на транспанированую матрицу

а лучше открой справачник по линейной алгебре и прочитай сам..

зы Это также умеют делать MATHCAD (функция lsolve) к которому есть api да и exel может это сделать( можно встроить в свою программу объект OLE)

зыы А лучше не изобретать колесо и юзать MATHCAD или MATHEMATICA или MATHLAB
[Pascal] Решение системы линейных алгебраических уравнений 28.11.01 11:22  
Автор: ukv Статус: Незарегистрированный пользователь
<"чистая" ссылка>
> Господа!
> Никак не могу найти алгоритм решения СЛАУ, при условии
> что количество переменных меньше количества уравнений.
> (N-кол-во переменных, M-кол-во уравнений M>N)
> Помогите кто может, киньте ссылку, plz

Какой именно алгоритм интересует? Для решения некорректно поставленных задач существует множество алгоритмов. Если количество переменных порядка 10, то вполне годится метод минимума невязки (если коротко, метод состоит в том, что в переопределенной системе Ax=b обе части домножают слева на транспонированную матрицу A, после чего получается обычная квадратная матрица).

Если переменных больше 1000, то независимо от соотношения M и N лучше делать регуляризацию задачи.
регуляризация, блин 28.11.01 23:56  
Автор: SEH Статус: Незарегистрированный пользователь
<"чистая" ссылка>
имхо, задали написать такую программу человеку на первом курсе. Самому думать(чего тут думать-то) лень.
я сам на превом курсе! а СЛАУ(системы линейных алгебраических уравнений) в школе решал сам! 29.11.01 19:11  
Автор: m0sia Статус: Незарегистрированный пользователь
<"чистая" ссылка>
готов сырцов вроде не осталось с уроков информатики :((
блин 29.11.01 01:14  
Автор: Biasha <Бяша> Статус: Member
<"чистая" ссылка>
> имхо, задали написать такую программу человеку на первом
Мы нечто подобное, даже почти в школе делали.
> курсе. Самому думать(чего тут думать-то) лень.
И это весьма, кстати, популярно здесь. Меня даже начинает раздражать...
Что ли штрафовать всё, что смахивает на учебное... Для их же пользы. Так ведь невинные пострадать могут.
Может dl написал бы где, что, мол, не спрашивайте.
Мне понравилось с 16ричной: человек спросил, его послали.
Он подождал, ещё раз спросил. И тут все бурно заобсуждали эту весьма сложную задачу :)
1




Rambler's Top100
Рейтинг@Mail.ru


  Copyright © 2001-2025 Dmitry Leonov   Page build time: 0 s   Design: Vadim Derkach