информационная безопасность
без паники и всерьез
 подробно о проектеRambler's Top100
Где водятся OGRыАтака на InternetСтрашный баг в Windows
BugTraq.Ru
Русский BugTraq
 Анализ криптографических сетевых... 
 Модель надежности двухузлового... 
 Специальные марковские модели надежности... 
 По роутерам Juniper расползается... 
 С наступающим 
 Microsoft обещает радикально усилить... 
главная обзор RSN блог библиотека закон бред форум dnet о проекте
bugtraq.ru / форум / beginners
Имя Пароль
ФОРУМ
если вы видите этот текст, отключите в настройках форума использование JavaScript
регистрация





Легенда:
  новое сообщение
  закрытая нитка
  новое сообщение
  в закрытой нитке
  старое сообщение
  • Напоминаю, что масса вопросов по функционированию форума снимается после прочтения его описания.
  • Новичкам также крайне полезно ознакомиться с данным документом.
Господа, будьте снисходительны, не бросайтесь сразу штрафовать за, как вам кажется, глупые вопросы - beginners на то и beginners.
re: 05.11.02 00:00  Число просмотров: 1101
Автор: beginner Статус: Незарегистрированный пользователь
<"чистая" ссылка>
предлагаю сделать следующим образом: (предположим , что у тебя в графе G :) нет параллельных сторон и петлей , если есть , то просто привести его к "нормальному" виду)
Сначала запусти алгоритм DFS(improved :-), который находит связанные компоненты в графе, то есть такие , что не существует двух вершин a1,a2 (в связанном компоненте ) таких , что любой путь из a1 в a2 лежит через u ( в противном случае u называется вершина-разделитель ;).
После этого (алгоритм обычно пользуется стеком , в который кидает вершины связанного компонента C) бери из стека вершины a in C
и проходи по всем сторонам, выходяшим из a , если вторй конец тоже в C то отлично , если нет , то уменьшай на один deg(a). После этого ещё раз проходишь по всем вершинам и если для всех a in C выполнается deg(a ) == | C | - 1 , то граф - клика , если нет то возвращаемся вDFS и ждем пока он даст следующее значение в стеке и проделываем тоже самое ...
Каждый раз когда алгоритм находит клику , сохранаешь её + кол-во элементов и таким образом всегда определишь максимальную. Есть алгоритмы гораздо лучше , это я так, навскид , алгоритмик на 3-
LINKS :
computer representation of graphs(chapter 1) :
http://www.cs.technion.ac.il/~algs/EvenBook/evenbook.html
DFS (same link , chapter 3)
сорu , если , что не так :))))
<beginners>
Теория графов 02.11.02 16:40  
Автор: NoBody Статус: Незарегистрированный пользователь
<"чистая" ссылка>
Народ, где можно надыбать алгоритм на каком-нить ЯП по поиску максимальной клики в графе?
И вообще где-нить есть база алгоритмов на графах??
Помогите plz.
Очень обламывает на курсач много времени тратить=)).
Теория графов 11.11.02 00:50  
Автор: NoBody Статус: Незарегистрированный пользователь
<"чистая" ссылка>
Всем пасиба, но я книжку толковую нашел. Там правда поиск всех клик, но переделать - раз плюнуть. Алгоритм зато весьма эффективный.
Если интересно - Б.Н. Иванов "Дискретная математика: алгоритмы и программы". 2002 г.
re:Теория графов 03.11.02 13:09  
Автор: beginner Статус: Незарегистрированный пользователь
<"чистая" ссылка>
а что такое клика , я учил на английском, поэтому если объяснишь помогу ;))) в любом случае в с++ есть класс graph , в котором большинство нужных алгоритмов реализованы ...
re:Теория графов 04.11.02 01:09  
Автор: NoBody Статус: Незарегистрированный пользователь
<"чистая" ссылка>
Клика - полный подграф. Т.е. набор вершин графа, которые все попарно связаны. Задача переборная, нудная. Сам я в ИНЕТе не нашел....((
re: 05.11.02 00:00  
Автор: beginner Статус: Незарегистрированный пользователь
<"чистая" ссылка>
предлагаю сделать следующим образом: (предположим , что у тебя в графе G :) нет параллельных сторон и петлей , если есть , то просто привести его к "нормальному" виду)
Сначала запусти алгоритм DFS(improved :-), который находит связанные компоненты в графе, то есть такие , что не существует двух вершин a1,a2 (в связанном компоненте ) таких , что любой путь из a1 в a2 лежит через u ( в противном случае u называется вершина-разделитель ;).
После этого (алгоритм обычно пользуется стеком , в который кидает вершины связанного компонента C) бери из стека вершины a in C
и проходи по всем сторонам, выходяшим из a , если вторй конец тоже в C то отлично , если нет , то уменьшай на один deg(a). После этого ещё раз проходишь по всем вершинам и если для всех a in C выполнается deg(a ) == | C | - 1 , то граф - клика , если нет то возвращаемся вDFS и ждем пока он даст следующее значение в стеке и проделываем тоже самое ...
Каждый раз когда алгоритм находит клику , сохранаешь её + кол-во элементов и таким образом всегда определишь максимальную. Есть алгоритмы гораздо лучше , это я так, навскид , алгоритмик на 3-
LINKS :
computer representation of graphs(chapter 1) :
http://www.cs.technion.ac.il/~algs/EvenBook/evenbook.html
DFS (same link , chapter 3)
сорu , если , что не так :))))
Теория графов 03.11.02 06:57  
Автор: Razum Статус: Незарегистрированный пользователь
<"чистая" ссылка>
> Народ, где можно надыбать алгоритм на каком-нить ЯП по
> поиску максимальной клики в графе?
> И вообще где-нить есть база алгоритмов на графах??
> Помогите plz.
> Очень обламывает на курсач много времени тратить=)).

Посмотри Кнута третий том книги "Искусство програмирования"
том называется "Сортировка и поиск" Я не уверен, но по вроде там
что-то есть.
1




Rambler's Top100
Рейтинг@Mail.ru


  Copyright © 2001-2025 Dmitry Leonov   Page build time: 0 s   Design: Vadim Derkach