Новое простое число Мерсенна dl // 20.01.16 08:26
Проект GIMPS сообщил об очередном обнаруженном простом числе Мерсенна. [Не забывайте при копировании материала указывать полный адрес источника: //bugtraq.ru/rsn/archive/2016/01/04.html] 2^74207281-1 (22,338,618 десятичных цифр) является 49-м простым числом Мерсенна и по совместительству новым самым большим простым числом. Предыдущее, 48-е число, было обнаружено три года назад.
Как можно протестировать подобнного моннстра? Вроде - задача для криптографии жизненнно-необходимая, но ведь достоверно-то не решеннная. Я так полагаю, что простота сего числа - гипотетическая с высокойдолей вероятности. нне более. Или - я не прав и алгоритм. хотябы для Мерсеннна есть?
почему нерешенная-то23.01.16 17:01 Автор: dl <Dmitry Leonov> Отредактировано 23.01.16 17:03 Количество правок: 1
По ссылке на источник есть слова о том, как его верифицировали после обнаружения:
The primality proof took 31 days of non-stop computing on a PC with an Intel I7-4790 CPU. To prove there were no errors in the prime discovery process, the new prime was independently verified using both different software and hardware. Andreas Hoglund and David Stanfill each verified the prime using the CUDALucas software running on NVidia Titan Black GPUs in 2.3 days. David Stanfill verified it using ClLucas on an AMD Fury X GPU in 3.5 days. Serge Batalov also verified it using Ernst Mayer's MLucas software on two Intel Xeon 18-core Amazon EC2 servers in 3.5 days.
Во всех случаях используются реализации теста Люка-Лемера, который как раз и придумал был для чисел Мерсенна, за счет чего именно числа Мерсенна и бьют рекорды, их проверка на простоту проще, чем лобовой перебор.