информационная безопасность
без паники и всерьез
 подробно о проекте
Rambler's Top100За кого нас держат?Spanning Tree Protocol: недокументированное применение
BugTraq.Ru
Русский BugTraq
 Анализ криптографических сетевых... 
 Модель надежности двухузлового... 
 Специальные марковские модели надежности... 
 Утекший код XP и Windows Server... 
 Дела виртуальные 
 Простое пробивание рабочего/провайдерского... 
главная обзор RSN блог библиотека закон бред форум dnet о проекте
bugtraq.ru / RSN / архив / 2016 / январь
2016
главная
январь
февраль
март
апрель
май
июнь
июль
август
сентябрь
октябрь
ноябрь
декабрь




Paragon Partition Manager 7.0

Новое простое число Мерсенна
dl // 20.01.16 08:26
Проект GIMPS сообщил об очередном обнаруженном простом числе Мерсенна.
[Не забывайте при копировании материала указывать полный адрес источника: //bugtraq.ru/rsn/archive/2016/01/04.html]
2^74207281-1 (22,338,618 десятичных цифр) является 49-м простым числом Мерсенна и по совместительству новым самым большим простым числом. Предыдущее, 48-е число, было обнаружено три года назад.

Источник: GIMPS      
теги: dnet  |  предложить новость  |  обсудить  |  все отзывы (2) [2738]
назад «  » вперед

аналогичные материалы
Конкурс по поиску простых чисел от Microsoft // 07.12.13 13:11
Очередное самое большое простое число // 05.02.13 22:05
Американский физик пугает заражением земных компьютеров инопланетянами // 26.11.05 02:58
BugTraq.Ru Team стала крупнейшей командой проекта DNet RC5-72 // 25.09.04 13:47
DNet: завершена первая фаза OGR // 17.05.04 02:20
DNet: статистика снова в строю // 17.04.04 19:09
dnet: нас уже тысяча // 05.11.03 09:58
 
последние новости
Утекший код XP и Windows Server удалось собрать // 01.10.20 01:40
Дела виртуальные // 30.09.20 22:36
Простое пробивание рабочего/провайдерского NAT с помощью Tailscale // 20.08.20 03:02
400 уязвимостей в процессорах Snapdragon // 08.08.20 08:08
Яндекс неуклюже оправдался за установку Теледиска // 29.07.20 17:09
Infosec-сообщество не поддержало отказ от термина black hat // 04.07.20 18:50
Расово верная чистка IT-терминологии // 16.06.20 18:03

Комментарии:

Как вот это тестируется на простоту? 23.01.16 11:19  
Автор: Zef <Alloo Zef> Статус: Elderman
<"чистая" ссылка>
Как можно протестировать подобнного моннстра? Вроде - задача для криптографии жизненнно-необходимая, но ведь достоверно-то не решеннная. Я так полагаю, что простота сего числа - гипотетическая с высокойдолей вероятности. нне более. Или - я не прав и алгоритм. хотябы для Мерсеннна есть?
почему нерешенная-то 23.01.16 17:01  
Автор: dl <Dmitry Leonov>
Отредактировано 23.01.16 17:03  Количество правок: 1
<"чистая" ссылка>
По ссылке на источник есть слова о том, как его верифицировали после обнаружения:

The primality proof took 31 days of non-stop computing on a PC with an Intel I7-4790 CPU. To prove there were no errors in the prime discovery process, the new prime was independently verified using both different software and hardware. Andreas Hoglund and David Stanfill each verified the prime using the CUDALucas software running on NVidia Titan Black GPUs in 2.3 days. David Stanfill verified it using ClLucas on an AMD Fury X GPU in 3.5 days. Serge Batalov also verified it using Ernst Mayer's MLucas software on two Intel Xeon 18-core Amazon EC2 servers in 3.5 days.

Во всех случаях используются реализации теста Люка-Лемера, который как раз и придумал был для чисел Мерсенна, за счет чего именно числа Мерсенна и бьют рекорды, их проверка на простоту проще, чем лобовой перебор.

http://sourceforge.net/projects/cudalucas/
https://goo.gl/DdMBHJ
<добавить комментарий>


анонимность клоуны конференции спам уязвимости .net acrobat activex adobe android apple beta bgp bitcoin blaster borland botnet chrome cisco crypto ctf ddos dmca dnet dns dos dropbox eclipse ecurrency eeye elcomsoft excel facebook firefox flash freebsd gnome google gpl hp https ibm icq ie intel ios iphone java javascript l0pht leak linux livejournal mac mcafee meltdown microsoft mozilla mysql netware nginx novell ny open source opera oracle os/2 outlook password patch php powerpoint pwn2own quicktime rc5 redhat retro rip router rsa safari sco secunia server service pack shopping skype smb solaris sony spyware sql injection ssl stuff sun symantec torrents unix virus vista vmware vpn wikipedia windows word xp xss yahoo yandex youtube



Rambler's Top100
Рейтинг@Mail.ru



  Copyright © 2001-2020 Dmitry Leonov   Page build time: 0 s   Design: Vadim Derkach